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ADAPTIVE MITTAG-LEFFLER STABILIZATION OF A CLASS OF
FRACTIONAL ORDER UNCERTAIN NONLINEAR SYSTEMS

Qiao Wang, Jianliang Zhang, Dongsheng Ding, and Donglian Qi

ABSTRACT

This paper deals with the stabilization of a class of commensurate fractional order uncertain nonlinear systems.
The fractional order system concerned is of the strict-feedback form with uncertain nonlinearity. An adaptive control
scheme combined with fractional order update laws is proposed by extending classical backstepping control to fractional
order backstepping scheme. The asymptotic stability of the closed-loop system is guaranteed under the construction of
fractional Lyapunov functions in the sense of generalized Mittag-Leffler stability. The fractional order nonlinear system
investigated can be stabilized asymptotically globally in presence of arbitrary uncertainty. Finally illustrative examples
and numerical simulations are performed to verify the effectiveness of the proposed control scheme.

Key Words: Fractional order systems, uncertainty, Lyapunov function, Mittag-Leffler stability, adaptive control,
nonlinearity.

I. INTRODUCTION

Fractional order systems (FOSs) have attracted
considerable attentions in recent years. Fractional calcu-
lus generalized the classical integer order integration and
differentiation to arbitrary non-integer order, thus pro-
viding a more accurate modeling to describe real world
physical phenomena [1,2]. It was found that a variety of
physical and biological systems can be well character-
ized by fractional order differential equations, such as
the fractional order (FO) Schrodinger equation in quan-
tum mechanics and FO oscillator in damping vibration
[3,4]. Moreover, FOSs have been found by directly gen-
eralizing integer order derivatives into the corresponding
fractional order ones, in which way chaotic dynamics has
been explored, such as FO Chen’s system and FO cellular
neural network[2].

The control problems of FOSs have been inves-
tigated in the control community, due to the demon-
strated applications of fractional calculus in many
fields of engineering and science. The stability criteria of
fractional order linear systems (FOLSs) have been fully
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studied [5–9]. The stability of linear time invariant incom-
mensurate or commensurate FOLSs can be analyzed
through the investigation of the eigenvalues of system
matrix [10,11]. Sufficient and necessary conditions on the
stability of fractional order interval systems are investi-
gated by a linear matrix inequality (LMI) approach [12]
and state feedback stabilization of FOLSs in triangu-
lar form is studied[13]. Selected stabilization problems of
positive FOLSs have been addressed [14].On the other
hand, for fractional order nonlinear systems (FONSs),
sufficient conditions on equilibrium asymptotical sta-
bility are given for incommensurate or commensurate
FO non-autonomous systems[15] and the Lyapunov sta-
bility of fractional differential equations is addressed
by the frequency distributed fractional integrator model
[16]. Inspired by the above stability analysis of FOSs, var-
ious control methods are proposed. The variable-order
fractional fuzzy proportional–integrail–derivative (PID)
controller is proposed to achieve better system perfor-
mance [17]. FO sliding surfaces and FO sliding mode
reaching laws have been proposed to deal with frac-
tional order uncertain chaotic systems [18–20], with
application in permanent magnet synchronous motor
and secure communication. However, none of the above
mentioned works was based on the fractional Lya-
punov theory and most of these works only consid-
ered nonlinearly parameterized uncertainty without the
case of arbitrary uncertainty. Furthermore, there still
remain certain traditional control methods that have
been applied successfully into integer order systems
to be extended and generalized to FOSs, such as the
backstepping design.
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It is well known that the Lyapunov direct method
has become one of the most important tools to stability
analysis and control design of nonlinear systems. The
necessary conditions for the stability defined in terms of
two measures for FOSs have been provided in a versa-
tile approach by utilizing Lyapunov-like functions [21],
however it is hard to involve system differential equations
in the fractional derivative of the Lyapunov functions
proposed. Other Lyapunov functionals are then pro-
posed [22], but are not simple and only valid for frac-
tional differential equations written as integral equations.
The fractional order extension of the Lyapunov direct
method is proposed to analyze Lyapunov-like stabil-
ity, by introducing generalized Mittag-Leffler stability
[23,24]. The generalized Mittag-Leffler stability of multi-
variables FOSs [25] and Lyapunov uniform stability [26]
for FOSs are then investigated respectively. Fortunately,
some new fractional derivative properties and fractional
comparison principles have been developed in recent
papers [26,27], which help to find appropriate fractional
Lyapunov functions.

Backstepping control design has been applied
broadly in stabilizing a general class of integer order
nonlinear systems in real applications. Up to now, a great
amount of research has been reported for classical non-
linear systems in strict-feedback form or lower triangular
systems [28,29], and many control methods have been
incorporated into the backstepping design [30,31]. How-
ever, to the best of our knowledge, there are few results on
the generalizations of backstepping control into FONSs,
other than the proposed example [32] and our previous
theoretical result [33]. Therefore, it is of great worth to
explore more backstepping techniques for FONSs.

In the previous work [33], control of FOSs with
unknown parameters has been studied, without the
consideration of the more general uncertainties, such
as external disturbances and noises. In this paper, we
consider a more general case where the FOSs contain
uncertain functions, which is more complicated than our
previous work.

In our contributions, we investigate the stabilization
problem, in terms of generalized Mittag-Leffler stability,
of a class of commensurate FONSs in strict-feedback
form with arbitrary uncertainty. As far as we know, there
have been no results on this issue before. It is should
be noted that Mittag-Leffler asymptotic stability implies
Lyapunov asymptotic stability. By means of extending
backstepping control into FONSs, an adaptive control
scheme combined with uncertainty estimates is proposed.
A general framework of quadratic Lyapunov candidate
functions is constructed for stability analysis and the
global asymptotic stabilization of the closed-loop system
is guaranteed in sense of fractional Lyapunov stability.

The arbitrary uncertainties are approximated by RBF
neural networks. In our design, the unknown parameters
and unknown upper bounds of the approximation errors
are estimated by the proposed fractional order update
laws. The uncertain parameters and the approximation
errors are assumed to be unknown constants, and to be
bounded by unknown upper bounds respectively. The
parameters in our design are irrespective of the system
uncertainties, and thus can be chosen freely for better
regulation of the controlled FONS. Finally, illustrative
examples and simulations are presented to demonstrate
the validity of our control design.

The rest of the paper is organized as follows. In
Section II, mathematical preliminaries, stability criteria
of FONSs are introduced. In Section III, the adaptive
control design via backstepping and fractional update
laws are presented. In Section IV, illustrative examples
and the simulations are provided.

II. PRELIMINARIES

Definition 1. Let f ∶ [a, b] → R and f ∈ L1[a, b]. The
Caputo definition of fractional derivative of order q is
defined as

Dq
t f (t) = 1

Γ(n − q)∫
t

0

f (n)(𝜏)
(t − 𝜏)q−n+1

d𝜏 (1)

where q is the derivative order and Γ(⋅) is the Gamma
function. f ∈ L1[a, b] signifies that f is Lebesgue measur-
able on the interval [a, b].

In this paper we use the symbol Dq for Dq
t and D for

the classical integer differential D1f (t) = df (t)∕dt.

Definition 2. [24] The constant x0 is an equilibrium point
of the Caputo fractional dynamic system Dqx = f (x, t),
x ∈ R, if and only if f (x0, t) = 0. Without loss of
generality, let the equilibrium be x0 = 0.

Definition 3. [34] A continuous function 𝛾 ∶ [0, t) →
[0,∞) is said to belong to class-K if it is strictly increasing
and 𝛾(0) = 0.

Lemma 1. [34] Let V ∶ D → R be a continuous posi-
tive definite function defined on a domain D ⊂ R

n that
contains the origin. Let Bd ⊂ D for some d > 0. Then
there exist class-K functions 𝛾1 and 𝛾2 defined on [0, d],
such that

𝛾1(‖x‖) ≤ V (x) ≤ 𝛾2(‖x‖) (2)

for all x ∈ Bd . If D = R
n, the functions 𝛾1 and 𝛾2 will be

defined on [0,∞).
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Stability analysis of fractional order system by
means of Lyapunov theory has been investigated
in[23–26] and the main result can be demonstrated by the
following theorem.

Theorem 1. [24] Let x0 = 0 be the equilibrium point of
the fractional order system Dqx = f (x, t), x ∈ D ⊂ R

n

where D contains the origin. Assume that a fractional
Lyapunov function V (x, t) ∶ R

n × [0,∞) → R is a con-
tinuous differential function and locally Lipschitz with
respect to x, and there exist class-K functions 𝛾i(i =
1, 2, 3) such that

𝛾1(‖x‖) ≤ V (x, t) ≤ 𝛾2(‖x‖)
DqV (x, t) ≤ −𝛾3(‖x‖) (3)

then x(t) = 0 is asymptotically stable. Moreover, if the
conditions hold globally on D = R

n, then is x(t) = 0
globally asymptotically stable.

Remark 1. Theorem 1 extends the Lyapunov direct
method into FOSs and it is called the generalized
Mittag-Leffler stability theorem. It should be noted that
Mittag-Leffler asymptotic stability implies the Lyapunov
asymptotic stability[24].

Since Theorem 1 describes the system stability in
the form of fractional derivative of the Lyapunov func-
tion, the following properties are useful to construct the
fractional Lyapunov function.

Lemma 2. [27] Let x(t) ∈ R be a real-valued continuous
and derivable vector function. Then, for any time t ≥ 0,
it is always hold that

1
2

Dqx2(t) ≤ x(t)Dqx(t) (4)

where q ∈ (0, 1).

Lemma 3. [27] Let x(t) = [x1(t),… , xn(t)] ∈ R
n be

a real-valued continuous and derivable vector function.
Then, for any time t ≥ 0, it always holds that

1
2

Dqx(t)⊤Px(t) ≤ x(t)⊤PDqx(t) (5)

where q ∈ (0, 1) and P = diag[p1,… , pn] > 0.

Remark 2. The differential equations of the FOSs
are related with the fractional Lyapunov function in
quadratic form by the inequalities in Lemma 2 and
Lemma 3. Thus these two lemmas help to construct
appropriate Lyapunov functions for FONS, as will be
seen in our proof in the next section.

III. MAIN RESULTS

We consider the fractional order nonlinear sys-
tems in strict-feedback form with arbitrary uncertainty
described by

Dqx1(t) = x2 + f1(x1)
Dqxi(t) = xi+1 + fi(x1, x2,… , xi)
Dqxn(t) = u + fn(x)

y = x1

(6)

where i = 2,… , n − 1 ; the system state x ∈ R
n, y is the

output and q ∈ (0, 1) is the order of the fractional deriva-
tive; fi(i = 1,… , n) are unknown smooth vector valued
functions and u is the control.

Assumption 1. The unknown functions fi can be
expressed as

fi(x1, x2,… , xi) = 𝜑⊤
i (x1, x2,… , xi)𝜃i + di (7)

where 𝜑⊤
i are continuous vector valued functions with

𝜑⊤
i (0) = 0; 𝜃i ∈ R

mi are the unknown constant parame-
ters; di are bounded approximation errors with unknown
upper bounds 𝛿i ≥ ||di

||.
Remark 3. Assumption 1 can be satisfied by the
approach of function approximation, such as neural net-
works and Fourier series expansion. The stabilization of
the integer order form of the system (6) has been fully
studied [28–31], however, limited results on its fractional
order form have been reported.

Under the Assumption 1, the considered system (6)
is expressed as

Dqx1(t) = x2 + 𝜑⊤
1

(
x1

)
𝜃1 + d1

Dqxi(t) = xi+1 + 𝜑⊤
i

(
x1,… , xi

)
𝜃i + di

Dqxn(t) = u + 𝜑⊤
n (x)𝜃n + dn

(8)

Theorem 2. The fractional order system (8) with uncer-
tainties can be stabilized globally asymptotically by the
adaptive feedback control

u = −
[
zn−1+knzn+𝜑⊤

n (x)�̂�n + sign
(
zn

)
𝛿n − Dq𝛽n−1

]
(9)

where ki are positive constants and

𝛽i = −
[
zi−1 + kizi + 𝜑⊤

i

(
x1,… , xi

)
�̂�i

+sign(zi)𝛿i − Dq𝛽i−1

]
, i = 2,… , n − 1

(10)
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and 𝛽1=−
[
k1z1 +𝜑⊤

1 (x1)�̂�1+sign(z1)𝛿1

]
, with update laws

Dq�̂�i = Γi𝜑i(x1,… , xi)zi (11)

and

Dq𝛿i = ri
||zi

|| (12)

where �̂�i is the estimate of the unknown parameter 𝜃i
and 𝛿i is the estimate of the unknown upper bound 𝛿i in
Assumption 1; Γi = diag[pi1,… , pimi

] > 0 and ri > 0 are
the gains of the update laws respectively.

Proof. We proceed step by step.

Step 1. Let z1 = x1 and define error variable z2 = x2 −
𝛽1(z1, �̂�1, 𝛿1), we obtain

Dqz1(t) = z2 + 𝛽1(z1, �̂�1, 𝛿1) + 𝜑⊤
1 (x1)𝜃1 + d1 (13)

Choose Lyapunov candidate function

V1(z1, 𝜃1, 𝛿1) =
1
2

z2
1 +

1
2
𝜃⊤1 Γ

−1
1 𝜃1 +

1
2r1

𝛿2
1 (14)

where 𝜃i = 𝜃i − �̂�i is the parameter estimate error and
𝛿i = 𝛿i − 𝛿i is the upper bound estimate error, by apply-
ing Caputo derivative, and according to Lemma 2 and
Lemma 3, we obtain

DqV1 ≤ z1Dqz1 + 𝜃⊤1 Γ
−1
1 Dq𝜃1 +

1
r1
𝛿1Dq𝛿1 (15)

By equation (13), we obtain

DqV1 ≤ z1

(
z2 + 𝛽1(z1, �̂�1, 𝛿1) + 𝜑

⊤𝜃1

1 + d1

)
− 𝜃⊤1 Γ

−1
1 Dq�̂�1 −

1
r1
𝛿1Dq𝛿1

= z1

(
z2 + 𝛽1 + 𝜑

⊤𝜃1

1

)
+ z1d1

+ 𝜃⊤1

(
𝜑1z1 − Γ−1

1 Dq�̂�1

)
− 1

r1
𝛿1Dq𝛿1

(16)

Choose the first stabilizing function 𝛽1 =
−
[
k1z1 + 𝜑⊤

1 (x1)�̂�1 + sign(z1)𝛿1

]
and note that z1d1 ≤||z1d1

|| ≤ ||z1
|| ||d1

|| ≤ ||z1
|| 𝛿1 = ||z1

|| (𝛿1 + 𝛿1), we obtain

DqV1 ≤ −k1z2
1 + z1z2 + 𝜃⊤1

(
𝜑1z1 − Γ−1

1 Dq�̂�1

)
+ 𝛿1

(||z1
|| − 1

r1
Dq𝛿1

)
+ ||z1

|| 𝛿1 − ||z1
|| 𝛿1

(17)

Substituting update laws (11) and (12) gives

DqV1 ≤ −k1z2
1 + z1z2 (18)

Step 2. Defining error variable z3 = x3 − 𝛽2, we obtain

Dqz2(t) = z3 + 𝛽2 + 𝜑
⊤𝜃2

2 + d2 − Dq𝛽1 (19)

Choose the second Lyapunov function V2 = V1 +
1
2
z2

2 +
1
2
𝜃⊤2 Γ

−1
2 𝜃2 +

1
2r2

𝛿2
2, we obtain

DqV2 ≤ − k1z2
1 + z2

(
z3 + 𝛽2 + 𝜑

⊤𝜃2

2 + d2 − Dq𝛽
1

)
− 𝜃⊤2 Γ

−1
2 Dq�̂�2 −

1
r2
𝛿2Dq𝛿2 + z1z2

(20)

Choosing the second stabilizing function 𝛽2 = −
[
k2z2+

z1 + 𝜑
⊤�̂�2

2 + sign(z2)𝛿2 − Dq𝛽1

]
, by update laws (11) and

(12), we obtain

DqV2 ≤ −k1z2
1 − k2z2

2 + z2z3 (21)

By the same procedure presented above, define zi+1 =
xi+1 − 𝛽i with stabilizing functions (10) and update laws
(11) and (12). In each step, choose Lyapunov candidate
function Vi = Vi−1 +

1
2
z2

i +
1
2
𝜃⊤i Γ

−1
i 𝜃i +

1
2ri
𝛿2

i , we obtain

DqVn−1 ≤ −
n−1∑
i=1

kiz
2
i + zn−1zn (22)

Step n. Choose Lyapunov candidate function

Vn = Vn−1 +
1
2

z2
n +

1
2
𝜃⊤n Γ

−1
n 𝜃n +

1
2rn

𝛿2
n (23)

and note that zn = xn − 𝛽n−1, we obtain

DqVn ≤ −
n−1∑
i=1

kiz
2
i + zn

(
𝜑
⊤𝜃n
n + dn + u − Dq𝛽n−1

)
+ zn−1zn − 𝜃⊤n Γ

−1
n Dq�̂�n −

1
rn
𝛿nDq𝛿n

= −
n−1∑
i=1

kiz
2
i + zn

(
zn−1 + 𝜑

⊤�̂�n
n + u − Dq𝛽n−1

)
+ zndn + 𝜃⊤n

(
𝜑nzn − Γ−1

n Dq�̂�n

)
− 1

rn
𝛿nDq𝛿n

(24)

Substitute the adaptive control (9), and note that zndn ≤||zn
|| (𝛿n + 𝛿n), we obtain

DqVn ≤ −
n∑

i=1

kiz
2
i + 𝜃⊤n

(
𝜑nzn − Γ−1

n Dq�̂�n

)
+ 𝛿n

(||zn
|| − 1

rn
Dq𝛿n

)
+ ||zn

|| 𝛿n − ||zn
|| 𝛿n

(25)

© 2016 Chinese Automatic Control Society and John Wiley & Sons Australia, Ltd



Q. Wang et al.: Mittag-Leffler Stabilization of FO Uncertain Systems 2347

By update laws (11) and (12), we obtain

DqVn ≤ −
n∑

i=1

kiz
2
i (26)

According to Lemma 1, for the Lyapunov candidate
function Vn, there exist class-k functions 𝛾1 and 𝛾2 such
that

𝛾1(‖𝜂‖) ≤ Vn(𝜂) ≤ 𝛾2(‖𝜂‖) (27)

where 𝜂 = [z1,… , zn, 𝜃1, ...𝜃n, 𝛿1,… , 𝛿n]⊤.
Unless zi = 0, we have DqVn < 0, thus by Lemma 1

there exists a class-K function 𝛾3 such that

DqVn ≤ −𝛾3(‖𝜂‖) (28)

According to Theorem 1, the z-system converges
to zero globally asymptotically. Since lim

t→∞
z1 = x1 = 0

implies lim
t→∞

𝛽1 = 0, and note that z2 = x2−𝛽1 and lim
t→∞

z2 =
0 implies lim

t→∞
x2 = 0, by induction, we have lim

t→∞
xi = 0,

thus the system (6) can achieve global asymptotical sta-
bilization under the proposed control. This completes
the proof.

Remark 4. In the above design procedure, the back-
stepping control has been extended to fractional order
systems. A fractional Lyapunov function has been con-
structed and the fractional extension of Lyapunov direct
method has been applied to obtain the asymptotical sta-
bility of the closed-loop system, in sense of Mittag-Leffler
asymptotical stability.

Remark 5. In comparison with the case of nonlinearly
parameterized uncertainty in [18–20], our design works
with arbitrary uncertainty and the control parameters
can be chosen freely irrespective of the system uncertain-
ties, thus the proposed adaptive control is valid for more
general fractional order systems in real applications. Fur-
thermore, Theorem 2 makes it also possible to achieve the
output tracking a reference trajectory yr asymptotically
by defining z1 = x1 − yr instead in step 1, which case will
be used to illustrate the approximation of the unknown
functions in our design.

For the approximation errors, if there exists a max-
imum 𝛿 = max{𝛿i, i = 1,… , n}, it is sufficient to only
estimate 𝛿, instead of all 𝛿i, to guarantee the system sta-
bilization, which is described by the following theorem.

Theorem 3. The fractional order system (8) with uncer-
tainties can be stabilized globally asymptotically by the

adaptive feedback control

u = −
[
zn + zn−1 + knzn + 𝜑⊤

n (x)�̂�n + mn − Dq𝛽n−1

]
(29)

where mi = zi𝛿
2∕

(||zi
|| 𝛿 + z2

i

)
, i = 1,… , n and ki are

positive constants and

𝛽i = −
[
zi + zi−1 + kizi + 𝜑⊤

i (x1,… , xi)�̂�i

+ mi − Dq𝛽i−1

]
, i = 2,… , n − 1

(30)

and 𝛽1 = −
[
z1 + k1z1 + 𝜑⊤

1 (x1)�̂�1 + m1

]
with update laws

Dq�̂�i = Γi𝜑i(x1,… , xi)zi (31)

and

Dq𝛿 = r
n∑

i=1

||zi
|| (32)

Proof. Choose Lyapunov candidate function

V1(z1, 𝜃1, 𝛿) =
1
2

z2
1 +

1
2
𝜃⊤1 Γ

−1
1 𝜃1 +

1
2r

𝛿2 (33)

and

Vi = Vi−1 +
1
2

z2
i +

1
2
𝜃⊤i Γ

−1
i 𝜃i, i = 2,… , n (34)

In each step, we have

DqVi ≤ −
i∑

j=1

kjz
2
j +

i∑
j=1

𝜃T
j

(
𝜑jzj − Γ−1

j Dq�̂�j

)

+ zizi+1 + 𝛿

(
i∑

j=1

|||zj
||| − 1

r
Dq𝛿

) (35)

According to the control law (29) and update laws (31)
and (32), we obtain

DqVn ≤ −
n∑

i=1

kiz
2
i (36)

Similar arguments to the proof of Theorem 2 conclude
the global asymptotical stability of the closed-loop sys-
tem. This completes the proof.

IV. EXAMPLES

In this section, two examples of fractional order
nonlinear systems are presented to demonstrate our con-
trol design. We employ the Radial Basis Function (RBF)
to approximate the unknown functions and the Gaussian
type functions are used as the basis functions.
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Example 1. Consider the fractional order Arneodo’s
bsystem

Dqx1(t) = x2(t)
Dqx2(t) = x3(t)
Dqx3(t) = −𝜀1x1(t) − 𝜀2x2(t) − 𝜀3x3(t) + 𝜀4x3

1(t) + u

y = x1

(37)

where 𝜀i(i = 1,… , 4) are the system parameters and
q ∈ (0, 1). In this example, the unknown function is
f = −𝜀1x1 − 𝜀2x2 − 𝜀3x3 + 𝜀4x3

1. We design the control in
three steps:

Step 1. Let z1 = x1 and define error variable z2 = x2 −
𝛽1, then we have Dqz1(t) = z2 + 𝛽1. Choosing
Lyapunov candidate function V1 = 1

2
z2

1 and
the stabilizing function 𝛽1 = −k1z1, we have

DqV1 ≤ −k1z2
1 + z1z2 (38)

Step 2. Define error variable z3 = x3−𝛽2. Choose Lya-
punov candidate function V2 = V1 +

1
2
z2

2 and
𝛽2 = −k2z2 − z1 + Dq𝛽1, then we have

DqV2 ≤ −k1z2
1 − k2z2

2 + z2z3 (39)

Step 3. Choose Lyapunov candidate function V3 =
V2 + 1

2
z2

3 + 1
2
𝜃⊤Γ−1𝜃 + 1

2r
𝛿2 and design the

adaptive control

u = −
[
k3z3 + z2 + 𝜑⊤�̂� + sign(z3)𝛿 − Dq𝛽2

]
(40)

and the update laws

Dq�̂� = Γ𝜑(x1, x2, x3)z3

Dq𝛿 = r ||z3
|| (41)

then we have

DqV3 ≤ −k1z2
1 − k2z2

2 − k3z2
3 (42)

Fig. 1 shows the convergence of the Arneodo’s sys-
tem. The system order is q = 0.97 and the system
parameters are 𝜀 = [−5.5, 3.5, 1,−1] .The initial condi-
tions are x(0) = [1, 2, 3]⊤ and �̂�(0) = 𝛿(0) = 0. The gains
of update laws are Γ = diag[15] and r = 3. The control
parameters are ki = 5. The number of the RBF neurons
is N = 9.
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Fig. 1. State convergence in Example 1.
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Fig. 2. Signal tracking in Example 1.

To illustrate the approximation of the unknown
function f , we design a control, discussed in Remark 5, to
achieve the output y = x1 tracking a reference trajectory
yr = sin(t). Figs 2 and 3 show the signal tracking and the
function approximation. It can be seen that the unknown
function can be well approximated.

Example 2. Consider the following fractional order non-
linear system:

Dqx1(t) = x2 + f1

(
x1

)
Dqx2(t) = x3 + f2

(
x1, x2

)
Dqx3(t) = u + f3

(
x1, x2, x3

)
y = x1

(43)
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Fig. 3. Approximation of f in Example 1.
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Fig. 4. State convergence in Example 2.

where the unknown functions are

f1 = 2x2
1 cos(x1)

f2 = x2
1 + x1x2 + x2 sin(x1) +

x2

1 + x2
1

f3 = x1x3 + x2 cos(x3) +
1

1 + x2
3

(44)

By the design procedure presented in the last section, we
have the stabilizing functions

𝛽1 = −
[
k1z1 + 𝜑

⊤�̂�1

1 + sign(z1)𝛿1

]
𝛽2 = −

[
k2z2 + z1 + 𝜑

⊤�̂�2

2 + sign(z2)𝛿2 − Dq𝛽1

] (45)

and the control law

u = −[k3z3 + z2 +𝜑⊤
3 (x)�̂�3 + sign(z3)𝛿3 − Dq𝛽2] (46)

and the update laws

Dq�̂�i = Γi𝜑i(x1,… , xi)zi

Dq𝛿i = ri
||zi

|| , i = 1, 2, 3
(47)

where z1 = x1, z2 = x2 − 𝛽1 and z3 = x3 − 𝛽2.

Fig. 4 shows the convergence of the system in Exam-
ple 2. The system order is q = 0.7. The initial conditions
are x(0) = [1, 2, 3]⊤ and �̂�(0) = 𝛿(0) = 0. The gains of
update laws are Γ = diag[15], Γ = diag[10], Γ = diag[12]
and r = 2. The control parameters are ki = 9. The
number of the RBF neurons is N1 = 9, N2 = 11 and
N3 = 10. Fig. 5 and Fig. 6 show the signal tracking and
the function approximation.
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Fig. 5. Signal tracking in Example 2.

Fig. 6. Approximation of fi in Example 2.
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The simulations in the two examples demonstrate
that the proposed control law can stabilize a class of frac-
tional order nonlinear systems with arbitrary uncertainty
and the unknown functions can be well approximated.

V. CONCLUSION

This paper deals with stabilization of a class of
fractional order nonlinear systems with arbitrary uncer-
tainty. The backstepping design scheme is extended to
fractional order systems, and an adaptive control law is
proposed with fractional order update laws to achieve a
global asymptotical stabilization of the closed-loop sys-
tem. Examples and simulation results are presented to
illustrate the effectiveness of the proposed control.
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